Sunday, September 27, 2015

Closeups of a LED printer head

I picked up some printer heads for an Okidata LED printer and checked them out under the microscope.  

This ebay auction shows what the complete head looks like.  An LED printer is basically a laser printer, except that instead of scanning a laser beam across the page to make the toner stick to the page, an array of LEDs does the work.

Here's the lens assembly and LED array removed from the housing:


The lens assembly has two staggered rows of lenslets.  The head has some sort of tilt arrangement that I suspect they use to vibrate the lens assembly back and forth and then power the LEDs when the lenses are in the desired position.  (But don't quote me on that).


Putting the LED array under the microscope, we can see where the PCB is wire bonded to the LED driver circuitry.  Normally wirebonding is used inside a chip to go from the wafer to the pins, and then the whole chip is sealed up in plastic or ceramic.  But here the tiny gold wires are exposed, making them very easy to damage (which I did when removing the board from the head).



Below is a closeup.  The wires at the top are all going to a common trace on the upper part of the PCB.  The wires at the bottom are address/control lines going to the green/purple wafers.  At first I thought this was the LED array, but it's just the control circuitry.  That wafer is then wirebonded to the actual LED array, which just looks like a black line with dark gray squares between the top and middle rows of wires.

So you can see they had to run a wire for each and every LED in the array, and they're too densely packed to be able to run the wires to pads on the PCB, so instead they go wafer to wafer.  Then they just need to run control lines out to the PCB so it can tell the control wafer which LEDs to turn on.







Wednesday, September 16, 2015

BeagleBone maximum PWM frequency

Using a PWM channel to get square waves (don't care about duty cycle) from my BeagleBone, looks like I can get up to 50MHz with:

root@beaglebone:~# echo 10 > /sys/devices/ocp.3/pwm_test_P9_14.12/period
root@beaglebone:~# echo 5 > /sys/devices/ocp.3/pwm_test_P9_14.12/duty

Monday, September 14, 2015

Beaglebone PRU DDR memory access

Here's some C and PRU assembly code I wrote to see how fast the PRU can write to system (DDR) memory.


 // Loads a .bin file into a BeagleBone PRU and then interacts with it  
 // in shared PRU memory and (system-wide) DDR memory.  
 //  
 // Pass in the filename of the .bin file on the command line, eg:  
 // $ ./pru_loader foo.bin  
 //  
 // Compile with:  
 // gcc -std=gnu99 -o pru_loader pru_loader.c -lprussdrv  
   
 #include <unistd.h>  
 #include <stdio.h>  
 #include <inttypes.h>  
 #include <prussdrv.h>  
 #include <pruss_intc_mapping.h>  
   
 int main(int argc, char **argv) {  
  if (argc != 2) {  
   printf("Usage: %s pru_code.bin\n", argv[0]);  
   return 1;  
  }  
    
  // If this segfaults, make sure you're executing as root.  
  prussdrv_init();  
  if (prussdrv_open(PRU_EVTOUT_0) == -1) {  
   printf("prussdrv_open() failed\n");  
   return 1;  
  }  
    
  tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA;  
  prussdrv_pruintc_init(&pruss_intc_initdata);  
   
  // Pointer into the 8KB of shared PRU DRAM   
  volatile void *shared_memory_void = NULL;  
  // Useful if we're storing data there in 4-byte chunks  
  volatile uint32_t *shared_memory = NULL;  
  prussdrv_map_prumem(PRUSS0_SHARED_DATARAM, (void **) &shared_memory_void);  
  shared_memory = (uint32_t *) shared_memory_void;  
   
  // Pointer into the DDR RAM mapped by the uio_pruss kernel module.  
  volatile void *shared_ddr = NULL;  
  prussdrv_map_extmem((void **) &shared_ddr);  
  unsigned int shared_ddr_len = prussdrv_extmem_size();  
  unsigned int physical_address = prussdrv_get_phys_addr((void *) shared_ddr);  
   
  printf("%u bytes of shared DDR available.\n Physical (PRU-side) address:%x\n",  
      shared_ddr_len, physical_address);  
  printf("Virtual (linux-side) address: %p\n\n", shared_ddr);  
   
  // We'll use the first 8 bytes of PRU memory to tell it where the  
  // shared segment of system memory is.  
  shared_memory[0] = physical_address;  
  shared_memory[1] = shared_ddr_len;  
   
  // Change to 0 to use PRU0  
  int which_pru = 1;  
  prussdrv_exec_program(which_pru, argv[1]);  
   
  for (int i = 0; i < 10; i++) {  
   sleep(1);  
   // See if it's successfully writing the physical address of each word at  
   // the (virtual, from our viewpoint) address  
   printf("DDR[%d] is: %p / 0x%x\n", i, ((unsigned int *)shared_ddr) + i,   
       ((unsigned int *) shared_ddr)[i]);  
   
   int passes = shared_memory[0];  
   int bytes_written = passes * shared_ddr_len;  
   printf("Bytes written: %d\n", bytes_written);  
  }  
   
  // Wait for the PRU to let us know it's done  
  prussdrv_pru_wait_event(PRU_EVTOUT_0);  
  printf("All done\n");  
   
  prussdrv_pru_disable(which_pru);  
  prussdrv_exit();  
   
  return 0;  
 }  
   

And here's the assembly:
 .origin 0  
 .entrypoint TOP  
   
 #define DDR r29  
 #define DDR_SIZE r28  
 #define SHARED_RAM r27  
   
 #define SHARED_RAM_ADDRESS 0x10000  
   
 TOP:  
  // Enable OCP master ports in SYSCFG register  
  LBCO r0, C4, 4, 4  
  CLR r0, r0, 4  
  SBCO r0, C4, 4, 4  
   
  MOV SHARED_RAM, SHARED_RAM_ADDRESS  
   
  // From shared RAM, grab the address of the shared DDR segment  
  LBBO DDR, SHARED_RAM, 0, 4  
  // And the size of the segment from SHARED_RAM + 4  
  LBBO DDR_SIZE, SHARED_RAM, 4, 4  
   
  // BIGLOOP is one pass overwriting the shared DDR memory segment  
  mov r12, 0  
  mov r14, 10000  
 BIGLOOP:  
    
  // Start at the beginning of the segment  
  MOV r10, DDR  
  ADD r11, DDR, DDR_SIZE  
   
  // Tight loop writing the physical address of each word into that word  
 LOOP0:  
  SBBO r10, r10, 0, 4  
  ADD r10, r10, 4  
  // XXX: This means r10 < r11, opposite what I expected!  
  QBLT LOOP0, r11, r10  
   
  ADD r12, r12, 1  
  SBBO r12, SHARED_RAM, 0, 4  
  QBGT BIGLOOP, r12, r14  
    
  // Interrupt the host so it knows we're done  
  MOV r31.b0, 19 + 16  
   
 // Don't forget to halt!   
 HALT  
   

Here's the output I get, about 200MB/sec:

 262144 bytes of shared DDR available.  
  Physical (PRU-side) address:9e6c0000  
 Virtual (linux-side) address: 0xb6d78000  
   
 DDR[0] is: 0xb6d78000 / 0x9e6c0000  
 Bytes written: 200540160  
 DDR[1] is: 0xb6d78004 / 0x9e6c0004  
 Bytes written: 401342464  
 DDR[2] is: 0xb6d78008 / 0x9e6c0008  
 Bytes written: 601882624  
 DDR[3] is: 0xb6d7800c / 0x9e6c000c  
 Bytes written: 802160640  
 DDR[4] is: 0xb6d78010 / 0x9e6c0010  
 Bytes written: 1002176512  
 DDR[5] is: 0xb6d78014 / 0x9e6c0014  
 Bytes written: 1202454528  
 DDR[6] is: 0xb6d78018 / 0x9e6c0018  
 Bytes written: 1402470400  
 DDR[7] is: 0xb6d7801c / 0x9e6c001c  
 Bytes written: 1602748416  
 DDR[8] is: 0xb6d78020 / 0x9e6c0020  
 Bytes written: 1802764288  
 DDR[9] is: 0xb6d78024 / 0x9e6c0024  
 Bytes written: 2003042304  
 All done  
   


If I crank up the number of bytes written by SBBO from 4 to 8 (in the SBBO and ADD after LOOP0), then I think it ends up writing the contents of r10 and r11 into memory, and I get 320MB/sec.  If I crank it up to 16 bytes per write, I get 450MB/sec.

So the PRU really can write very quickly to system RAM.

Friday, September 11, 2015

Beaglebone PRU GPIO example

Executive Summary

If you're just trying to do ordinary GPIO on your beaglebone, this is not the page you're looking for.

This is about how to use certain GPIO pins on the beaglebone using the two embedded 200MHz PRU microcontrollers using their super-fast Enhanced GPIO mode.  The PRUs can also be used to access other GPIO pins, but not as quickly, and I don't cover that here.

Reading all the way through chapters 6 and 13 of Exploring BeagleBone was the best resource I found for understanding all this, but at the end of the day, here's what I had to do:

  1. sudo apt-get update && sudo apt-get dist-upgrade
  2. Create a device tree overlay, compile it, reboot, and enable it
  3. Assemble my PRU code (just 3 instructions!)
  4. Compile a tiny C program to send the code to the PRU.

One challenge is that most of the info out there is from 2013 or 2014, when you had to install PRUSS manually.  Fortunately, that stuff all came by default on my BeagleBone Green and BeagleBone Black.  So you don't have to worry about installing am335x_pru_package to get pasm and libprussdrv!

Turns out programming the PRU is the easy part.  The hard part is sorting out all the different ways of doing GPIO and getting the right mode enabled in the device tree.

Choosing the Right Pins (it's harder than you think)

This table shows which GPIO pins you can access from the PRUs using Enhanced GPIO (EGP).  The "BB Header" column shows you the physical header pin on the BeagleBone.  The R30 and R31 columns show you which pins you'll be writing or reading when you access that bit on those registers from the PRU0 or PRU1 microcontrollers.

But it's not the whole story -- if you  have a BeagleBone Black, all of the pins for PRU1 are used by the HDMI or onboard flash (emmc2).  So to use those pins, you have to disable HDMI or onboard flash (and thereafter boot from a microSD card) first, which requires editing the uEnv.txt file and rebooting.  (BeagleBone Green doesn't come with HDMI, freeing up those pins by default.)

These tables for headers P8 and P9 from Exploring BeagleBone highlight those reserved pins in red, and then show in the rightmost column that they're reserved for HDMI or emmc2.

Note from the first table that even though each PRU supports 16 EGP pins, the BeagleBone headers don't expose them all.  So don't expect to do fast 16-bit parallel I/O from a PRU on your BeagleBone.

Finally, it looks like pins 41 and 42 on P9 are yet another special case, and are overloaded with other GPIO pins somehow, and so you have to set those pins as inputs before using them from the PRU.  (I didn't try).

Let's avoid all those special cases and pick two pins that aren't already spoken for.  We'll use pin 11 on header P8 for output.  The tables show us that P8_11 correspond to PRU 0, register 30, bit 15.  In the PRUs, R30 is a "magic" register, and writing to it lets us set the state of output pins.

Let's also pick a pin for input, pin 16 on P8.  There the tables show us that P8_16 corresponds to PRU 0, register 31 bit 14.  R31 is the other "magic" PRU register, and reading from it reads input pins.

Get the Pin Configuration Right!

This is really easy to screw up.  The first thing we need to find is the multiplexer mode, which determines whether the pin will be hooked up to the PRU, HDMI port, etc.

The modes are nicely laid out as 7 columns in the P8 and P9 tables from the book.  At first you might think that Mode6 is "PRU input" mode, since there are lots of green cells like "pru_pruX_r31_XX", and r31 is the magic PRU input register.  But P8_11 and P8_12 break this rule.  So it's better to assume the pinmux modes were assigned at random, and check carefully in the tables.  I'm glad I printed them out, since I've had to stare at them a lot.

We want P8_11 to be our output pin, because the P8 table doesn't list it as colliding with anything important, and because it's highlighted in green, showing that it can work with PRU EGP.  Its name in that cell is pr1_pru0_pru_r30_15.  "pru0" tells us it's for PRU0.  "r30" tells us it can be used as an output, since r30 is the magic output register.  And it's in the "mode6" column, so we know we need to set that pin to mode 6 if we want to use it from the PRU0's register 30.

We can also get that from the elinux.org table, since the "Pinmux Mode" to the right of the R30(output) column is Mode_6.

For our input pin P8_16, when we follow the tables we see that it's also mode 6 in this case.

But as explained in the Exploring BeagleBone book (and less clearly in table 9-60 of the TRM), we're not done yet!  There are 4 other settings that can apply to each pin:

Bits 0..2 are the multiplexer mode (these two pins are both 6)
Bit 3 enables (0) or disables (1) the internal pullup/pulldown resistor
Bit 4 is 0 for pulldown, 1 for pullup
Bit 5 is 0 to disable input, 1 to enable input.
Bit 6 is 1 if you want slow rise/fall times (for long i2c buses)

So for our output pin, P8_11, our configuration value is just 0x6, since none of the other bits are set.

But for our input pin P8_16, we need to turn on bit 5, so the value is 0x26  (10000 binary ORed with 110 binary).


Device Tree Overlays (there is NO escape!)

I looked all over, and there doesn't seem to be a way around creating and editing device tree overlays.

Now that we've picked what pins we want to use with the PRU, we have to use the device tree to enable the PRUs and put those pins into the right mode.

Here's a DTS file that sets up P8_11 for output via PRU EGP, and P8_16 for input via PRU EGP.  It's much shorter than it looks because I added a lot of comments:

 // This DTS overlay sets up one input and one output pin for use by  
 // PRU0 via its Enhanced GPIO mode, which will let us access those pins  
 // by writing to R30 bit 15 or reading from R31 bit 14.  
   
 // Save this file wherever you want (but I recommend /lib/firmware), as  
 // "PRU-GPIO-EXAMPLE-00A0.dts".
   
 // Compile with:
 // dtc -O dtb -I dts -o /lib/firmware/PRU-GPIO-EXAMPLE-00A0.dtbo -b 0 -@ PRU-GPIO-EXAMPLE-00A0.dts  
   
 // You'll have to reboot, after which you can do this as root to activate it:  
 // echo PRU-GPIO-EXAMPLE > /sys/devices/bone_capemgr.?/slots  
 
 /dts-v1/;  
 /plugin/;  
 
 / {  
   // This determines which boards can use this DTS overlay  
   compatible = "ti,beaglebone", "ti,beaglebone-green", "ti,beaglebone-black";  
   
   // I think part-number is supposed to correspond with the filename,  
   // so we'd save this as "PRU-GPIO-EXAMPLE-00A0.dts".  
   part-number = "PRU-GPIO-EXAMPLE";  
   
   // This always seems to be 00A0, and all the .dtbo files in /lib/firmware  
   // seem to be named foo-00A0.dtbo, but then are loaded without that suffix.  So
   // for foo-00A0.dtbo we'd do 'echo foo > /sys/devices/bone_capemgr.?/slots'
   version = "00A0";
   
   // List the pins and resources we'll be using. This table:  
   // http://elinux.org/Ti_AM33XX_PRUSSv2#Beaglebone_PRU_connections_and_modes  
   // shows which pins can be used with PRU0 and PRU1 for input and output via  
   // registers R31 and R30.  
   // Our output pin, P8_11, corresponds to PRU 0, register 30, bit 15  
   // Our input pin, P8_16, corresponds to PRU 0, register 31, bit 14  
   //  
   // Beware: Many other PRU EGP pins are reserved by HDMI or onboard flash, which  
   // would need to be disabled first by editing uEnv.txt and rebooting.  
   exclusive-use =  
      "P8.11", "P8.16", "pru0";  
   
   fragment@0 {  
    target = <&am33xx_pinmux>;  
    __overlay__ {  
      example_pins: pinmux_pru_pru_pins {  
   
       // The offset and mode for pins P8_11 and P8_16 also come from the table linked above.
       //  
       // That table gives offset 0x34 for P8_11, and 0x38 for P8_16.
       // It also shows us we want pinmux mode 6 for P8_11 in output mode,  
       // and again pinmux mode 6 for P8_16 in input mode.
       // 
       // Table 9-60 in the TRM: http://www.ti.com/lit/ug/spruh73l/spruh73l.pdf  
       // helps us calculate the rest of the configuration value.  
       //  
       // For P8_11, the other fields are all 0, so the value is just 0x06.  
       //  
       // For P8_16, we want it to be an input, so we also set bit 5, yielding  
       // a value of 0x26. We could also set bits 3 and 4 to enable a pullup  
       // or pulldown.  
       pinctrl-single,pins = <  
         0x34 0x06  
         0x38 0x26  
       >;  
      };  
    };  
   };  
   
   // This enables the PRU and assigns the GPIO pins to it for use in EGP mode.  
   fragment@1 {  
    target = <&pruss>;  
    __overlay__ {  
      status = "okay";  
      pinctrl-names = "default";  
      pinctrl-0 = <&example_pins>;  
    };  
   };  
 };  
   

After saving that to /lib/firmware/PRU-GPIO-EXAMPLE-00A0.dts, I compiled it:

 root@beaglebone:/lib/firmware# dtc -O dtb -I dts -o /lib/firmware/PRU-GPIO-EXAMPLE-00A0.dtbo -b 0 -@ PRU-GPIO-EXAMPLE-00A0.dts  

And then I had to reboot before the system would let me load it.  The "PRU-GPIO-EXAMPLE" and the  "L" in "P-O-L" shows me that the overlay loaded successfully.

 root@beaglebone:/lib/firmware# echo PRU-GPIO-EXAMPLE > /sys/devices/bone_capemgr.?/slots  
 root@beaglebone:/lib/firmware# cat /sys/devices/bone_capemgr.?/slots  
  0: 54:PF---   
  1: 55:PF---   
  2: 56:PF---   
  3: 57:PF---   
  4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G  
  5: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-UART2  
  6: ff:P-O-L Override Board Name,00A0,Override Manuf,PRU-GPIO-EXAMPLE  


Writing Code (finally!)

Now that the hard part's done, we can write some assembly code for the PRU and some C code to load it.  Here's the C code that runs on the main CPU and lets us load an arbitrary PRU .bin file into PRU 0:

 // Loads an arbitrary .bin file into PRU0 and waits for it to signal  
 // that it has finished.  
 //  
 // Pass in the filename of the .bin file on the command line, eg:  
 // $ ./pru_loader foo.bin  
 //  
 // Compile with:  
 // gcc -o pru_loader pru_loader.c -lprussdrv  
   
 #include <stdio.h>  
 #include <prussdrv.h>  
 #include <pruss_intc_mapping.h>  
   
 int main(int argc, char **argv) {  
  if (argc != 2) {  
   printf("Usage: %s pru_code.bin\n", argv[0]);  
   return 1;  
  }  
   
  // If this segfaults, make sure you're executing as root.  
  prussdrv_init();  
  if (prussdrv_open(PRU_EVTOUT_0) == -1) {  
   printf("prussdrv_open() failed\n");  
   return 1;  
  }  
    
  tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA;  
  prussdrv_pruintc_init(&pruss_intc_initdata);  
   
  // Change to 1 to use PRU1  
  int which_pru = 0;  
  printf("Executing program and waiting for termination\n");  
  prussdrv_exec_program(which_pru, argv[1]);  
   
  // Wait for the PRU to let us know it's done  
  prussdrv_pru_wait_event(PRU_EVTOUT_0);  
  printf("All done\n");  
   
  prussdrv_pru_disable(which_pru);  
  prussdrv_exit();  
   
  return 0;  
 }  
   

And here, finally, is the assembly code that runs on the PRU.  "set r30, r30, 15" is all it takes to turn on our pin, and "clr r30, r30, 15" is all it takes to shut it off!

Here's a lovely PRU instruction set quick reference, also from the book.  Print it out too.

 // Demonstrates using Enhanced GPIO (EGP), the fast way to  
 // do GPIO on certain pins with a PRU.  
 //  
 // Writing to r30 with PRU0 or PRU1 sets the pins given in this table:  
 // http://elinux.org/Ti_AM33XX_PRUSSv2#Beaglebone_PRU_connections_and_modes  
 //  
 // But only if the Pinmux Mode has been set correctly with a device  
 // tree overlay!  
 //  
 // Assemble with:  
 // pasm -b pru_egp_output.p  
   
 // Boilerplate  
 .origin 0  
 .entrypoint TOP  
   
 TOP:  
  // Writing bit 15 in the magic PRU GPIO output register  
  // PRU0, register 30, bit 15 turns on pin 11 on BeagleBone  
  // header P8.  
  set r30, r30, 15  
   
  // Uncomment to turn the pin off instead.  
  //clr r30, r30, 15  
   
  // Interrupt the host so it knows we're done  
  mov r31.b0, 19 + 16  
   
 // Don't forget to halt or the PRU will keep executing and probably  
 // require rebooting the system before it'll work again!  
 halt  
   

I assembled with "pasm -b pru_egp_output.p", loaded it with "sudo ./pru_loader pru_egp_output.bin", and verified with my voltmeter that P8_11 showed 3.3v.  Then I uncommented the clr, reassembled, re-ran and verified that it dropped to 0.  Success!

Now we're ready for the big leagues, 5 whole instructions to copy the value of the input pin to the output pin:


 // Demonstrates using Enhanced GPIO (EGP), the fast way to  
 // do GPIO on certain pins with a PRU.  
 //  
 // Writing to r30 or reading from r31 with PRU0 or PRU1 sets or reads the pins  
 // given in this table:  
 // http://elinux.org/Ti_AM33XX_PRUSSv2#Beaglebone_PRU_connections_and_modes  
 //  
 // But only if the Pinmux Mode has been set correctly with a device  
 // tree overlay!  
 //  
 // Assemble with:  
 // pasm -b pru_egp_io.p  
   
 // Boilerplate  
 .origin 0  
 .entrypoint TOP  
   
 TOP:  
  // Reading bit 14 in the magic PRU GPIO input register 31  
  // bit 14 for PRU0 reads pin 16 on BeagleBone header P8.  
  // If the input bit is high, set the output bit high, and vice versa.  
  QBBS HIGH, r31, 14  
  QBBC LOW, r31, 14  
   
 HIGH:  
  // Writing bit 15 in the magic PRU GPIO output register  
  // register 30, bit 15 for PRU0 turns on pin 11 on BeagleBone  
  // header P8.  
  set r30, r30, 15  
  QBA DONE  
   
 LOW:  
  clr r30, r30, 15  
   
 DONE:  
  // Interrupt the host so it knows we're done  
  mov r31.b0, 19 + 16  
   
 // Don't forget to halt or the PRU will keep executing and probably  
 // require rebooting the system before it'll work again!  
 halt  
   

I tested it by installing a jumper from P9_01 (GND) or P9_03 (DC_3.3V) to P8_16.  Be sure not to connect to P9_05 or P9_06 though, since those are at 5V and could blow up your board!

Where to now?

If you're still with me, you probably have something fancier in mind than just turning a pin on or off.  Even though am335x_pru_package came installed on my BBB, the examples weren't there.  You can find them here on github: https://github.com/beagleboard/am335x_pru_package/tree/master/pru_sw/example_apps

In particular, PRU_memAccessPRUDataRam was super helpful.  It doesn't use any GPIO pins, so it only requires that the PRUs are enabled (which you get if you use my overlay above).  I was trying to get some assembly code to work, and couldn't get any signal back from the PRU to know if it wasn't working or if it just couldn't toggle any GPIO pins.  I had deleted that pesky "interrupt the host" instruction at the end of my listing above, so I was running the code totally blind.  When I discovered that PRU_memAccessPRUDataRam worked fine on a clean boot, but would no longer work after running my code, I quickly realized that I had forgotten to put a HALT instruction at the end of my code.

One other thing to explore is the new C compiler for the PRUs, PRUSS-C.  It's also installed by default on my beaglebones.  It looks pretty neat, but I haven't managed to get the code onto a PRU yet.  Something to do with .cmd scripts for hexpru, I think.

Finally, TI also has a GUI development suite for their processors.  I was tempted to try it, but they make you create a login to myTI first, and I'd rather use command line tools anyway.

Thursday, September 10, 2015

Getting Beaglebone black and green to work with Edimax, Keebox and D-Link wifi adapters

Wifi adapters: No luck out of the box with an Edimax EW-7811UN, Keebox W150NUIEEE, or dlink DWA-121.  The latter two were recognized by my Beaglebone Green, but wouldn't associate with my access point.  The Edimax showed up on my Beaglebone Black after an apt-get dist-upgrade, and associated once, but had tons of packet loss and never associated again.

Error message from the Keebox and D-Link usb wifi adapters:

# iwconfig wlan0 essid MyWifiName
Error for wireless request "Set ESSID" (8B1A) :
    SET failed on device wlan0 ; Operation not permitted.

Fix: 

# ifconfig wlan0 up

Then "iwconfig wlan0 essid MyWifiName" works.

I tried this after connecting via ethernet and running apt-get update ; apt-get dist-upgrade, so I'm not sure if it'd work out of the box.


Tuesday, September 08, 2015

Edimax (RTL8192CU) USB wifi adapter with Beaglebone Black

Out of the box, the stock debian distro for my Beaglebone Black didn't recognize my Edimax USB wifi adapter.  But after plugging it into wired ethernet and doing an apt-get update ; apt-get dist-upgrade, it shows up just fine.

I got it to associate with an access point once, but I got a lot of packet loss, and haven't gotten it to work since.  After an hour or two of fiddling, I'm just going to buy a different adapter.

Update: Looks like "ifconfig wlan0 up" gets it to associate with an AP.  See http://credentiality2.blogspot.com/2015/09/getting-beaglebone-black-and-green-to.html

Friday, September 04, 2015

Arduino Due: toggle open drain GPIO pin

I wanted a pin on my Arduino Due to switch between pulling down toward ground and turning off (going high impedance).

I tried using pinMode(x, INPUT);, but there's a bug in the arduino libraries that sets the output high when I switch back to pinMode(x, OUTPUT).  That's no good!

So I read up in the datasheet and found the register that enables open drain mode.  The pinout was also handy so I could see that pin 53 (according to Arduino) is port B, pin 14 according to the ARM chip.

Here's the code snippet.

 // Sketch for Arduino Due that enables open drain mode for pin B14  
 void setup() {  
  pinMode(53, OUTPUT);  
  digitalWrite(53, 0);  
  // Enable open drain mode on pin 14 of port B using the Multi-Driver Enable Register  
  REG_PIOB_MDER = 1 << 14;  
  // To switch it back to a normal output:  
  // REG_PIOB_MDDR = 1 << 14;  
 }  
 void loop() {  
  // Turn on B14 (should be about equivalent to digitalWrite(53, 1))  
  REG_PIOB_SODR = 1 << 14;  
  // Pause 1ms so it's easy to see on the scope  
  delay(1);  
  // Turn off B14  
  REG_PIOB_CODR = 1 << 14;  
  // Pause 2ms  
  delay(2);   
 }  

Wednesday, September 02, 2015

libfann bugs

Looking for a general purpose neural network library, fann seemed reasonable.  Jury's still out, but I see a number of shortcomings:


  • I see people warning against using its builtin input/output scaling.  So make sure your training set (inputs and outputs) is all scaled to [0,1]

  • fann_create_train(...) shows up in the docs but doesn't appear to actually exist (version 2.1.0)

  • I see no examples of fann_create_train_from_callback(), and the docs are unclear, but it looks like it allocates the memory itself and then calls the callback num_data times.  So the num_data value that gets passed to the callback is 1..n, and the two pointers point directly to the elements to be filled in.
  • #include <doublefann.h> with gcc -lfann caused data corruption for me, because the internal library calls had fann_type = float while my main program had fann_type = double.  So either use #include <fann.h> with gcc -lfann  or  #include <doublefann.h> with gcc -ldoublefann!